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Abstract—The problem of estimating the reduction in the crack extension force when a cracked plate is
repaired by reinforcing patches bonded to its faces is dealt with in two steps. First, starting with an
uncracked plate, the reduction in stress at the prospective location of the crack is determined by treating
the reinforced region as an inclusion of higher stiffness than the surrounding plate. Detailed results are
given for the case of elliptical orthotropic patches bonded to an infinite orthotropic plate. The second step is
to introduce a crack into the reduced stress field prevailing in the plate under the reinforcements. The
crack extension force is estimated by using recent results which give an upper bound for the force when
the reinforcements cover the whole plate. Some practical implications of the results are discussed.

1. INTRODUCTION
A cracked plate is to sustain a tensile load at right-angles to the crack. Before this load is
applied, the plate is repaired by having identical patches bonded to its faces, one on each side,
over the crack. The aim of this paper is to estimate the reduction in the crack extension force
effected by this repair.

These bonded reinforcements reduce the crack extension force in two distinct ways which
are best considered separately. Accordingly, suppose that the plate is not cracked to begin with,
but it is reinforced over the prospective location of the crack and loaded. The first effect of the
reinforcements is to reduce the stress in the uncracked plate at the prospective location of the
crack. The degree of this stress reduction depends mainly on the relative stiffness and on the
shape (or aspect ratio) of the reinforcements. Next suppose that a crack is artificially cut into
the plate, while the external load is still acting. The second effect of the reinforcements is to
restrain the opening of the crack. The effectiveness of this restraint depends primarily on the
length of the crack relative to the characteristic length for load transfer from the plate to the
reinforcements.

The importance of making the above distinction is that different modelling assumptions can
be used in assessing each of those two effects. Thus, for the first effect, it can be assumed that
the bond does not allow any relative displacement between the plate and the reinforcements.
This rigid-bond assumption ignores the finite width of the load-transfer zone around the
boundary of the reinforcements (an idealization which is justified when the actual width of the
transfer zone is small relative to the lateral dimensions of the reinforcements). The area
covered by the reinforcements can then be treated as an inclusion of higher stiffness than the
surrounding plate. This inclusion analogy was formulated by Muki and Sternberg [1] for the
case of an isotropic plate and isotropic reinforcements. The principal steps in this formulation
are recalled in Section 2. For the present application (which differs from that considered in [1]),
it is desirable to extend the formulation to orthotropic constituents, to account for the current
use of uni-directional fibre-composite patches as reinforcements [2). Detailed results are
presented in Section 3 for the case of elliptical orthotropic patches which are rigidly bonded to
an infinite orthotropic plate.

To assess the second reinforcing effect (viz. the restraint on the crack opening), the
assumption of a rigid bond must be discarded, as it would imply that the crack cannot open. It
is now important to model more accurately the transfer of load through the adhesive layers in
the immediate vicinity of the crack. But, if the load transfer length is sufficiently smail compared
with the lateral dimensions of the reinforcements, the restraint on the crack opening will not
dependsensitively on the precise shape orextent of the reinforcements, so that both the plate and the
reinforcements can now be assumed to be of infinite extent. With this idealization, one can use
the results recently derived in [3] to estimate the crack extension force. This estimate is
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presented in Section 4, and it is compared in Section 5 with numerical results obtained by the
finite element method [4]. Because our estimate is given as an explicit formula, it is particularly
useful for assessing the influence of crack growth, or of variations in the shape of the
reinforcements, which it would be laborious to study numerically. The present approach
identifies a characteristic crack-length, which is related to, but not identical with, the lap-joint
load-transfer length. The existence and the relevance of this characteristic length do not seem
to have been recognized prior to the present writer’s work [3].

A number of repairs of cracked metallic plates by bonded fibre-composite patches have
been undertaken by Baker et al., some of which are documented in [2]. I am indebted to Dr.
Baker for suggesting a theoretical study of such repairs.

2. THE INCLUSION ANALOGY
2.1 Notation and conventions

We shall consider in Sections 2 and 3 an uncracked plate of uniform thickness 2¢, which is
reinforced by two identical patches placed directly opposite one another across the plate, with
one patch bonded to each face of the plate. This configuration is symmetrical about the plate’s
mid-plane. It will simplify the description of the problem to imagine the plate cut along its
mid-plane and to speak as if we were considering a plate of thickness ¢ with a single
reinforcement of thickness ¢, bonded on one side, but under an artificial restraint against
out-of-plane bending. The results may be applied in practice to cases of one-sided reinforce-
ment if it appears safe to neglect the actual out-of-plane bending.

The inclusion analogy will be formulated using the conventional two-dimensional idealiza-
tion according to which the thickness-average of the in-plane stresses and displacements can be
determined from the equations of generalized plane stress. The position of material points will
be referred to an x, y coordinate system parallel to the plate’s faces. Let the reinforcement
cover an open region 9@ bounded by a smooth curve € (Fig. 1). The plate can then be divided
into an inner region @ lying under the reinforcement, and an outer region complementary to
@+ %. For conceptual convenience, we shall suppose that @ is a simply-connected region,
whose boundary % lies strictly within the plate’s outer boundary. The part of the plate
complementary to @ + € will be denoted by 4, in view of its description later as the “matrix”
surrounding an “inclusion” which occupies the region 9. €*, €~ will be used to indicate that
the curve € is approached from inside (i.e. from @), or from outside (i.e. from .4), respectively;
n will denote the outward normal to € relative to @, or equivalently, the inward normal to %
relative to 4, as shown in Fig. 1.

Let 0,4, u, denote respectively the stress components and the components of the displace-
ment u in the plate. The usual conventions apply: (i) Greek subscripts stand for x or y, (ii)
repeated Greek subscripts imply a summation, and (iii) a comma indicates partial differentiation
with respect to the subscript which follows it. Parameters or field variables pertaining
respectively to the reinforcement or the inclusion will be distinguished from the corresponding
quantities pertaining to the base-plate by the addition of a subscript or superscript R or I. No

Fig. 1. An uncracked plate reinforced over an inner region @ with external loads applied to its outer
boundary, showing the notation used in Section 2. In Section 4 a crack will be introduced in the plate along
a segment of the y-axis, under the reinforcement.
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summation is implied over these affixes which will serve merely as labels. A symbol carrying no
such label pertains to the plate.

The ultimate objective in Sections 2 and 3 is to determine the stresses a,4 (9) in the plate
over the reinforced region 9, when prescribed external loads are applied to the plate’s outer
boundary, or equivalently, when a prescribed stress field would prevail in the plate without the
reinforcement. No external forces will be applied to the reinforcement. The final objective will
be reached by first calculating the stresses in an appropriately defined inclusion, and then
determining how the load carried by the inclusion is shared between the plate and the reinforcement
in the actual reinforced structure. It will be clear that the inclusion analogy could be formulated for
arbitrary regions @, and that the reinforcements could be allowed to overlap the plate and carry
external loads, as in [1], but the above restrictions allow sufficient scope for the application which
we have in mind.

2.2 General formulation

Consider the possibility of constructing an inclusion which will replace the reinforced
portion @ without altering the stress or displacement in .4, for-any prescribed applied load. To
simplify that construction, we shall assume that: (i) the adhesive layer transmits load from the
plate to the reinforcement by exerting equa! and opposite shear tractions to their adjoining
faces; (ii) these shear tractions may be replaced by body forces having the same resultant, but
distributed uniformly accross the thickness; and (iii) the average stress across the thickness can
be determined by the theory of generalized plane stress. Then if F(x,y) denotes the shear
traction per unit area at a point (x, y) on the reinforcement, the corresponding body forces in
the plate and the reinforcement at that point are — F/t and F/tg, respectively, and the equations
of equilibrium may be written as follows:

aup,ﬂ (9) = Fult’ (1)
0%5()=-F,itr 2
Now suppose that a state of generalized plane stress prevails in a hypothetical plate of

uniform thickness ¢ having the shape @ bounded by €, with the stress components o, defined
by

100p(D) = 10,5(D) + tro 3p(D). (€)

From (1, 2) it follows that

ol5.5(@)=0. @

Thus, no body forces act within this hypothetical plate: the stress o1, must be due solely to
tractions

To(%) = t106(€*) g, ®

acting on its boundary %.
To establish the inclusion analogy, it is sufficient to choose the constitutive properties of this
hypothetical plate so as to fulfil the following boundary conditions on %:

TIH(€) =105 (€) n, )
(€)= u(€). )

If this choice can be made, the reinforced portion @ of the original plate can be replaced by the
hypothetical plate, which can now be viewed as an “inclusion™ having different constitutive
properties from the surrounding *‘matrix”.

So far, the constitutive properties of the plate and reinforcement are unrestricted, and no
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rule has been specified for evaluating the shear tractions transmitted by the adhesive. To
proceed, we shall assume that (i) all components are homogeneous and linearly elastic, and (ii)
the bond allows no relative displacement between the plate and the reinforcement. It is then
natural to require that the same displacement field should prevail in the inclusion, i.e. we
require

v (2)=u(2)=uR(2), 8)

so that boundary condition (7) is automatically satisfied. These assumptions are used from the
start by Muki and Sternberg [1] who restrict their analysis to isotropic components. Having in
mind applications involving uni-directional fibre-composite sheets, we shall assume that the
plate and reinforcement are orthotropic, with their principal directions parallel to the x, y axes.
The appropriate inclusion is then also orthotropic, with the same principal directions.

2.3 Elastic constants of the equivalent inclusion (orthotropic plate and reinforcement)

The elastic properties of an orthotropic plate under generalized plane stress can be specified
by four constants, which are usually taken to be the principal Young's moduli E,, E,, the major
Poisson’s ratio »(= »,,), and the shear modulus u(= G,,). There are two Poisson’s ratios, »,,
and »,,, which are related by

vE; = v,,E,.
We have chosen »,, as the major Poisson’s ratio, having in mind applications where the
“fibre-direction” is parallel to the x-axis (then E, > E,). An isotropic plate can be considered as
a special case of an orthotropic plate for which E, = E, = E, »,, = »,, = v, and p is no longer an

independent constant but is related to E, v by E =2u(1+»).
The stress-strain equations for an orthotropic plate take the form

O A, vA, 0 €
o,|={vA, A, 0 & |, )]
Ty 0 0 2uj (e
with
A= Exl(l ~ Vxy Vyx)v Ay = Eyl(] = ny"yx)-

The elastic constants of the inclusion are obtained in their simplest form if A,, A,, v, u are
used as the basic constants instead of E,, E,, », u. (A similar, but less advantageous,
simplification would occur for isotropic components if A = u/(1 ~ ) and » are used as the basic
constants, instead of u, » as in [1]). From (3), which specifies the stress in the inclusion, we
have

oyt = oyt +olts,
and from (8), which imposes equal displacements and thus equal strains, we have
fig = €pg = 653, in 3.
Thus, we find

Alti(e,, + vi€s) = A€y, + ve, ) + At (€, + VR €x).

This equation must hold for arbitrary ¢,,, ¢,,, so, by taking in turn €, =0, then ¢, =0, we
derive the relations

Al = (A + AR, (10a)
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v = (VAL + AT RIAL + ARtg), (10b)

and similarly,
Al =(Ad+ AR, (10c)
pr = (ut + pgtr)l. (10d)

Equations (10) give the required elastic constants of the inclusion in terms of those of the
plate and reinforcements. The inclusion-thickness #; can be chosen arbitrarily: Muki and
Sternberg set t; =t + t; it will prove more convenient in the present context to choose

t’=t,

so that (5, 6) imply the continuity of stresses across €.

3. AN INFINITE PLATE WITH AN ELLIPTICAL REINFORCEMENT
3.1 The elliptical inclusion
The stress in an inclusion can be determined explicitly only for certain simple shapes and
load distributions. Specifically, consider an infinite orthotropic plate with an elliptical inclusion
whose boundary is described by

(xlay+(ylbY =1.

The plate is subjected to the following uniform biaxial tension at infinity
0'n=P,0’yy=Q,0x,=0,(x,)')-’°° (11)
with P, Q prescribed constants. It can be anticipated from the known results for the ellipsoidal

inclusion [5], that the stress will be uniform inside an elliptical inclusion under generalized plane
stress.

This expectation greatly simplifies the strategy for deriving an explicit solution. It leads us to
suppose that the stress inside the inclusion is given by

on=P+p,al,=Q+gq,l,=0, (12)
where p, q are constants which represent the “excess stress” in the inclusion relative to the
applied stress at infinity. The choice o1, =0 follows from the expectation of uniform stress and
the fact that the symmetry with respect to the x- and y-axis implies

ol,=0onx=0and y=0.

The excess stress will be determined in two steps. First, consider the region 4 as an infinite
orthotropic plate with an elliptical hole which is-loaded internally along %€ by the tractions

T=- (pnxv Q"y)~

The resulting displacement u can be found by the method described in [6], Section 25, using the
symmetry to set ¥, =0 on x =0, u, =0 on y = 0. The important feature of the result is that

w(€) = (kix, kyy),
where ki, k, are linear combinations of p, g. This form of the displacement makes it simple to

choose p, g so as to satisfy the continuity condition (6, 7), because the displacement in the
inclusion due to the stress (12) is also of the form: u}(%"*) proportional to x, u}(€*) propor-
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tional to y. One can thus derive two simultaneous linear equations for p, g, and this second step
confirms the expected form (12) for the stress in the inclusiont.
The detailed expressions for p, g involve the roots of the characteristic equation

A4+ (E/u-20)A*+ EJE, = . (13)

These roots occur in complex conjugate pairs, and are never purely real (see [6], Section 19).
They are purely imaginary if

(Edp - 2v) > 4E,JE,

As this condition generally holds for fibre composites, the equations determining p, ¢ will be
presented only for the case where (13) has the purely imaginary roots + ia, i, (a > 8). Then,
with ¢, = ¢, we find

{(bla)(a + B)E, + 1/ E}p —{(ep - »)|E; + vl E{}q = (1] E, - | EX)P - (M E, - v/ E)Q,
(14)

—{(aBE,)"' ~ W E, + v/ Ef}p +{(alb) (a« + B)/(aBE,) + 1/E}}q = — (WE, - v/E}) P
+(1/E, - 1/E})Q. (15)

The method described in [6], Section 25, requires modification when the characteristic eqn
(13) has coincident roots (see [6], Section 22). In particular, for the special case of an isotropic
plate, (13) has double roots at =i, but it can be verified (e.g. by using [7]) that (14, 15) give p, q
correctly for that case if we set a = 8 = 1; the reinforcement, and consequently the inclusion,
can be either isotropic or orthotropic. It can also be verified, by inter-changing x and y, that
(14, 15) hold for b/a > 1 as well as for bla < 1.

Equations (14, 15) constitute two Simultaneous linear equations for p and g whose solution
is elementary. The stress in the inclusion then follows from (12).

3.2 The stress at the prospective location of the crack

It remains to determine how the load carried by the inclusion is shared between the plate
and the reinforcement in the original structure. For the present application we only require
(D). From the defining eqn (3), and the equality of strains imposed by (8), we find

out =0l t;—(Ale, + R ARe,) tr, inD.
Hence, with ¢; = ¢t and using the inverse of (9), we derive
Tx(D) = o4 {1 = (48/1) (AT — vy v AS)ES}
+ol, (talt) (v AR EL — vg AYE,)). (16)

Equation (16) simplifies considerably for the special case of an isotropic plate and rein-
forcement, both having the same Poisson’s ratio, and this special case will be used below to
illustrate the following two results which hold for the general case. First, there is no optimum
stiffness for the reinforcement, in the sense that |0, (@) decreases uniformly with increasing
stiffness. Thus, from the point of view of reducing o, (D), the higher the stiffness of the
reinforcement, the better. Secondly, in some cases there can be an optimum shape for which
|ow(D)] is a minimum. The existence and the precise specification of that optimum shape
depend on the ratio Q/P and on the reinforcement’s stiffness relative to that of the plate.

1In fact, the stress in an elliptical inclusion is uniform under more general conditions than have been used here, as it
could be expected from the corresponding results in [5).
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3.3 Influence of the reinforcement’s shape and stiffness (isotropic case)

Let E, Eg denote respectively the Young's modulus of the plate and thé reinforcement, both
of which are assumed to be isotropic and to have the same Poisson’s ratio ». Then, the
equivalent inclusion is also isotropic with the same Poisson’s ratio (i.e. ¥, =v = pg), and its
Young's modulus is given by

E[ =F+ ER tR/t. (17)

Equation (16) reduces to
0x (3) = (EIE)) 0. (18)
Let m, p denote respectively the aspect ratio (a/b) and stiffness ratio (E/E). Note that, for
fixed b, the aspect ratio m varies from 1 to = as the reinforcement changes from a disc of radius
b to the strip |y| <b; for fixed a, m varies from 1 to 0 as the shape changes from a disc of
radius a to the strip |x| <a; and, for fixed Et, the stiffness ratio p varies from 1 to « as the

stiffness Ex #z of the reinforcement changes from 0 to . From (18), (12) and (14, 15) it follows
that

0% (D)= (P +p)lp, (19)
p ={(p - DID}2pm + 1) (P — vQ) +{v + (1 - »)p} (Q - »P)] (20)
D=Qplm+1)(2pm +1)-{v +(1 - »)p}.
To clarify the important features of this result, consider the following particular choices for
the applied stress (11) at infinity.
(i) Uniaxial tension parallel to the x-axis: P >0,Q =0. For a fixed shape (m constant), the

stress oy, (92) under the reinforcement decreases monotonically with increasing reinforcement
stiffness, the asymptotic behaviour for p > 1 being given by

0.(9) =%(3 +v+2m)d—(1- v,

Thus, there is no optimum stiffness for the reinforcement.
For fixed p, and m > 1,

0u(P)=P,

i.e. there is no stress reduction when the reinforcement is elongated parallel to the tension,
while for m <1,

(D)= %{1 +m(1-) (14 v=wp) (o - 1)/2p}. @1

The remarkable feature of (21) is that for (1+ v — »p) <0,
i.e. for

(EtIERtR) < v,
the first-order term in m is negative, suggesting that there is an optimum value of m for which

0 (D) takes a minimum value. By considering the derivative of o, (@) with respect to m, we
find that this optimum shape is given by

m _[+1-v)(p-1-»{4-(1-vP—v(l-»)p})"?-2
{4-(0-v)lp-»(1-v) '
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For example, with » =1/3 there is an optimum shape whenever p >4, i.e. whenever Eptg >
3Et. In particular, if p = 10, 0,,(2) decreases from 0.1 P for m =0, to minimum of 0.098 P for
m =0.027 (when b/a =37), and then it increases monotonically to 0.14 P when m =1, and
towards the limiting value P as m —»x,

(it) Uniaxial tension parallel to the y-axis: P=0,Q>0. Without the reinforcement, this
tension would have no effect on a crack along x = 0, but with a reinforcement there is clearly a
non-zero stress o, (2). The important feature is that the sign of this stress depends on the
shape, while its absolute value decreases with increasing p, the asymptotic behaviour for p > 1
being given by

a,,(l)':%)-(l -v=2vm)l{4-(1-»)}.

Thus, for v = 1/3, o, (D) is positive when m < 1, and negative when m > 1. The choice of an
optimum shape will therefore depend on the ratio Q/P.

(iii) Simple shear at 45° to the x,y-axes: P =—Q> 0. For all values of p there now exists
an optimum aspect ratio m which is given by

m=[{1+(1-v)p- Dy} -1y,
2py={4-(1=vf}p?+ (1 - v{(1 -20)p +1}.

For example, with » = 1/3, p = 10, we find that o,, (9) decreases from 0.1 P when m=0to a
minimum of 0.087 P when m =0.085 (b/a = 11.75), then it increases to 0.14 P when m =1, and
further towards 1.3 P as m -, Note that the value of o (D) for m =0 and m = 1 is the same,
to two significant figures, as for case (i).

(iv) Hydrostatic tension: P = Q> 0. There is no optimum shape or stiffness: for any value of
P, 0y (@) increases monotonically from Plp when m = 0 towards the value

(Plp} {1+(1=»)(p = 1)} as m>e.

4, THE CRACK EXTENSION FORCE

The next step is to introduce a crack by making a cut in the plate along x =0, |y|< ¢, and
allowing the normal tractions across this cut to relax to zero.

To obtain a realistic estimate for the crack extension force G, we must now allow for some
relative motion between the plate and the reinforcement, otherwise the crack would not open
so that G would be identically zero. We shall adopt a simple alternative assumption, viz. eqn (23)
which leads to an explicit formula for the load transfer length, and an explicit estimate for G.

It should be emphasized that G cannot be determined analytically in closed form, not even
for the special case of an isotropic plate and reinforcement, both having the same Poisson’s
ratio and both being of infinite extent. The best which can be done for that special case is to
reduce the problem to the numerical solution of a Fredholm integral equation of the second
kind, with a complicated kernel in the form of an integral over an infinite range involving a
product of Bessel functions [8,3]. The more general case has been studied numerically by a
direct approach which leads to a two-dimensional integral equation whose kernel has a
logarithmic singularity [9, 10], and by the finite element method [10, 11, 4}. The most extensive
of these studies is that of Ratwani [10] who considers an infinite plate and reinforcement.
Although his detailed results cannot be derived analytically, they can be well approximated by
two upper bounds, one of which is an asymptote for ¢ -0, the other an asymptote for ¢ =, as
shown in [3]. The estimate given below for G relies on these upper bounds. The reasoning used
in [3] will be briefly recalled in a form adapted to our present concern with reinforcements
which are smaller than the baseplate. We shall continue to consider the particular case of an
elliptical reinforcement on an infinite plate, as in Section 3, for the sake of having a known
constant value for a,, at the prospective location of the crack. That value will be denoted by o,
thus

g=0,(x=0,|y|<c) 22)
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The results should be useful for other shapes of reinforcément which can be adequately
approximated by an ellipse, at least for the purpose of determining o,, (x =0, |y]<c¢) in the
uncracked plate; these other shapes should also be symmetrical about x =0, so that o,,
(x =0)=0, as for the case of an elliptical reinforcement.

4.1 The load transfer length

Recall from Section 2.2 that F(x, y) denotes the shear traction per unit area exerted by the
adhesive layer on the reinforcement at the point (x, y). We continue to suppose that this surface
traction can be replaced by a body force distributed uniformly across the thickness, but instead
of the rigid-bond assumption (8), we shall now assume that

F(x,y) = (palta) fulx, y) —u®(x, y)}, (23)

where the constants u,,f4, denote respectively the shear modulus and the thickness of the
adhesive layer. This assumption has proved very successful as a basis for first approximations
in the theory of lap-joints, see [12].

To estimate G we shall require the solution to the following problem. Suppose that an
infinite reinforcing strip is bonded to two semi-infinite strips of the base-plate whose ends touch
along x = 0. These strips are taken to be of unit width so that they lie in the region 0 <y <1 of
the plane. Next, suppose that the semi-infinite strips are prised apart by a pressure oof applied
to their ends at x = +0, giving rise to a compressive stress

ox(x=20,0sy<])=-0,.

The movement of these semi-infinite strips is resisted by adhesive shear tractions which
transmit the load to the reinforcing strip. The problem is to calculate the work done in applying
that pressure. The configuration is that of a lap-joint, but instead of the external force being
applied to the base-plate at x = + w, it is being applied at x = =0, The proposed calculation can
be reduced to the solution of an ordinary differential equation if the variation of stress and
displacement in the y-direction is ignored, as it is commonly done in dealing with lap-joints [12].
1t is then readily shown that

F.(x,y) = Aoot e™,
A= (ual tO(EY " +(ER )71}, (29)

i.e. the adhesive shear tractions decay exponentially with distance from the joined ends. A™! is
known as the lap-joint load-transfer length. The work done, which will be denoted by G., is
given by '

Gn = Uozt(tA/ﬂA)A. (25)

A more refined calculation (which allowed for variations in the y-direction and across the
thickness) would lead to a more precise value of G., but the above estimate is sufficiently
accurate for our purposes.

4.2 An upper bound for G

When the crack is cut in, the load 2ctey which was previously transmitted across the
segment x =0, |y|<c of the plate is partly transferred to the reinforcement and partly
redistributed within the plate. The relative proportions in this repartition of load depend
primarily on the crack length: the longer the crack, the greater the proportion of load which is
transferred to the reinforcement. Thatpart of theload whichis redistributed within the plate gives rise
to a stress singularity at the crack tips which can be characterized by a stress intensity factor K (see
{13)). It is shown in [3] that the body force field corresponding to the shear tractions (23) does not
affect the relation between G and K which is derived in [13]. Thus, for an isotropic plate under
generalized plane stress,

G =KY[E, (26)
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while for an orthotropic plate,

G ={K*QE, E,)"} {(EJE,)"* + E, (E, - 2vu)2uE,)}'*. @n

In what follows we shall therefore deal with either G or K, whichever is the simpler.
If we suppose that no load is transferred to the reinforcement, we shall certainly over-
estimate K. This leads therefore to an upper bound for K which is given by

Ku = 0'0(11’0)"2. (28)

A corresponding upper bound Gy for G is obtained from (26) or (27). These bounds will be
closer to the actual values of G and K the shorter the crack, and in fact, for a reinforcement of
infinite extent, they give an asymptote with first order contact in the limit c—0, [3]. For long
cracks, however, these bounds greatly over-estimate the actual values, because most of the load
2ctoy is transferred to the reinforcement.

4.3 An estimate for G (long cracks)

Suppose first that both the reinforcement and the plate are of infinite extent. As the crack
length 2¢ increases, an increasing amount of load has to be either transferred to the reinforce-
ment or redistributed within the plate. The crack extension force G is necessarily an increasing
function of crack length, but its value cannot exceed the force G.. on a semi-infinite crack. It is
shown in [3] that G.. can be obtained from the calculation described above in Section 4.1, so
that we may take G. to be given by (25). The crack length ¢ = {}/ 7 for which Gy = G, provides
a characteristic length which is related to the load-transfer length A~' given by {24): e.g. for an
isotropic plate

Q = Et(t pa)A,
={Et(talua) (1+ EY Eg o)} 29

The combination Gy for mc < and G, for wc = () gives an upper bound, and therefore a
conservative estimate, for G for any crack length. It is shown in [3], by direct comparison with
the numerical results of [10], that this estimate is close to the actual value of G, the worst error
(of up to 15%) occurring in the middle range 1/3 < wc/() <3.

Returning to the present concern with reinforcements of finite size, we propose that the
minimum of Gy and G. will again provide a satisfactory estimate of G (though G. is
no longer necessarily an upper bound).

It would be difficult to supply a precise error analysis for this estimate; its accuracy is most
readily assessed by comparison with numerical results for particular cases (Section 5). The
estimate should be more accurate in giving the relative values for G for arbitrary variations of
the parameters than it is in giving the particular value of G for a specific choice of parameters.
This is especially valuable for assessing the influence of variations in crack length, or of
variations in the aspect ratio of the reinforcement, which it would be laborious to study
numerically.

5. COMPARISON WITH NUMERICAL RESULTS

To illustrate how the ideas presented above may be used in practice, we shall now consider
a particular case for which some numerical results are available [4)t. This involves an isotropic
plate which is sufficiently large that it may be considered to be of infinite extent. The plate is
reinforced by orthotropic patches over a rectangular region [x|<75mm, |y|<25mm, and it is
subjected to a uni-axial tension o,, =P at infinity. A crack is introduced along x =0,
|y] =19 mm. The plate paraineters are

E=71GPa, v=1/3, t = 1.15mm;

1 am indebted to Dr. R. Jones for access to the original numerical results which are presented in graphical form in [4).
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the adhesive parameters are
s =0965GPa, t, = 0.1 mm;
the reinforcement parameters are
EX =208 GPa, Ef =25GPa, vz = 1/6 tx = n/8 mm,

where 7 is the number of plies in the reinforcement (the reinforcement’s shear modulus ug will not
be required).

The first step is to estimate the stress o, at the prospective location of the crack. It can be
expected that the assumption of a rigid bond is appropriate over an “inner region”, the width of
the margin between that inner region and the actual boundary of the reinforcement being
comparable with the load-transfer length A~ for lap-joints. This expectation is confirmed by the
numerical results shown in Fig. 15 of [11]. In the present case A~} =2 mm (and this is a typical
value in applications [2]) so that it may be neglected. It also seems reasonable to suppose that
for the purposes of estimating o, the rectangular reinforcement may be replaced by an elliptical
one having the same aspect ratio m = a/b = 3. Thus, we shall use the results given in Section 3.
The appropriate inclusion parameters depend on the thickness of the reinforcement, i.c. on n,
the number of plies. The largest value of n considered in [4] is 6, for which the appropriate
inclusion parameters are found from (10) to be

E] =207.3GPa, E! =92.3GPa, v, =0.3,(4; = 1).

Solving (14, 15) for p, q and using (12, 16) we derive ao=0.67 P.

The next step is to calculate the characteristic length {}. We find 1 =3.6 mm, so that
mc/Q» 1 for the present value of ¢ =19 mm. Thus the appropriate estimate for K is K..=
aof2'2. Our estimated reduction in K, relative to the value K = P(wc)"® which would prevail
without the rejnforcements, is found to be 83.5%, while the value given in [4] is 80.5%.

Other quantities reported in [4] can also be estimated by the present approach. For
example, the maximum stress o (max) in the reinforcement occurs at x=0, y =0, and if
mc (), as in the present case, this stress can be estimated by supposing that all the load carried
locally by the inclusion is now carried by the reinforcement, so that

ok (max)=col tftg=26P.

This is exactly the value given in [4].

The above calculations, repeated for n=1, give a reduction in K of 72% and o%,
(max) = 10.7 P, while the corresponding results in [4] are 66.5% and 9.9 P, respectively. The
agreement with the numerical results of [4] is considered to be satisfactory, in view of the
replacement of a rectangular patch by an elliptical one.

6. CONCLUSION

Bonded reinforcements reduce the crack extension force in two distinct ways: first, they
reduce the stress in an uncracked plate at the prospective location of the crack; and secondly,
they restrain the opening of the crack when it is introduced in that reduced stress field. These
two effects can be adequately estimated by using two different modelling assumptions for the
transfer of load through the adhesive. One practical advantage of making this distinction is that
it can be useful to depend only on the first effect, the stress reduction, which relies on the
successful transfer of load at the edge of the reinforcement. This stress reduction would not be
affected if there were no adhesive in a central region under the reinforcement, or if the adhesive
in that inner region fails when the crack is introduced, provided that the width of the region of
adhesion around the edge of the reinforcement is larger than the load-transfer length. The
reduction in crack extension force for short cracks (i.e. with mc/Q) < 1) relies almost entirely on
this first effect.
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The stress reduction in an uncracked plate can be estimated by assuming a rigid bond and
using an inclusion analogy. The elliptical inclusion has been studied analytically and two
important points emerge from the results:

(i) In some cases there can be an optimum shape, or aspect ratio, for the reinforcement.
However, this optimum does not seem to be very sharp and it appears sufficient to guard
against non-optimal shapes. Thus, with an applied uniaxial tension o,, = P, a reinforcement
which is elongated parallel to the x-axis (in the limit, a stringer) does not reduce the stress at the
prospective location of the crack along x =0, so that its restraining action is due entirely to the
second effect noted above. (Nevertheless, quite substantial reductions in crack extension force
can be achieved by bonded stringers placed close to the crack tip, if the adhesive remains
elastic [14)).

(ii) A tensile or compressive stress parallel to the y-axis can lead to a tensile stress o, at
the prospective crack location, the main determining factor being again the shape of the
reinforcement. Without the reinforcements, a normal stress parallel to the y-axis would have no
effect on a crack lying along the y-axis,lbut it is important not to ignore such stresses when a
plate is reinforced.

The second effect, namely the restraining action of the reinforcement when a crack is
introduced, has been sufficiently discussed in [3], where it was noted that the mechanical
properties of bonded reinforcements in this respect (e.g. their fatigue strength) can be
adequately assessed from those of lap-joints. The present work, in combination with [3],
provides a useful conceptual framework for detailed experimental or numerical studies, and
even for the practical design, of bonded reinforcements for cracked plates.
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